
1

SpinBoard Custom Adapter Development



2

A general setup containing two different sources and three different 
widget can be modelled using the following graph.

SpinBoard Architecture
The chain structure of the backend 

Source 1

Source 2

Adapter 1

Adapter 2

Adapter 3

Core 1

Core 2

Core 3

DataFilter 1 Widget 1

Widget 2

widget 3

SpinBoard UI

External 
information

• Widget 1 gets the data from Source 1 through Adapter 1 with a data filter layer.

• Widget 2 contains data from Sources 1 and 2 through respectively Adapters 1 and 2

• Widget 3 gets the data from Source 2



3

The goal of an adapter is to map the data from an external source to an internal representation.

The tool provides a general Interface receiving a generic EventMessage containing the data from a 
source and returning a list of Rows.

SpinBoard Architecture
The adapter as a stateless mapping component

public interface Adapter {
List<Row> baseAdapt(EventMessage<?> message);

}

Every customer can implement a set of adapters based on the widget requirements:

private List<Row> buildRow(EventMessage<KafkaMessage> message) {
Map<Long, Cell> cells = new HashMap<Long, Cell>();

cells.put(NAME, CellBuilder.builder().withDisplayValue(message.getName()).build());
cells.put(ID, CellBuilder.builder().withDisplayValue(message.getId()).build());
cells.put(PRICE, CellBuilder.builder().withDisplayValue(message.getPrice()).build());

Row finalRow = newRowBuilder().withId(message.getId()).withAction(INSERT).withCells(cells).build();

return Lists.newArrayList(finalRow);
}

For every KafkaMessage a row 
containing three cells is created

Then the resulting row is returned to the 
tool for the next step of the process



4

Thank You!
Contact us at:

Info@t-spin.com

Visit us at:

https://www.t-spin.com

mailto:Info@t-spin.com
https://www.t-spin.com/

